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Consider a random experiment whose possible outcomes are zl,  z~ ,..., z , .  Let the 
prior probabilities be p0 ..... p0, and let the posterior probabilities be Pl ,..., P~. It is 
shown that, subject to certain prescribed and intuitively reasonable conditions, the 
expression I = k Zp~ ln(pJpfl), where k is a positive constant, is the unique expression 
for the information contained in a message which alters the probabilities from the 
pfl to the p~. 
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1. I N T R O D U C T I O N  

In fo rma t ion  theory was founded in 1948 when Shannon m introduced the useful 
quanti tat ive measure  

g ( p ,  , P2 .... , P,O = - - k  ~ p~ In p~ (1) 

for  the "uncer ta in ty"  or  "miss ing in fo rma t ion"  in the discrete probabi l i ty  distribution 
(Pl .... , p~). One reason for  the wide use o f ( l )  is that  it is the only expression possessing 
certain intuitively reasonable propert ies  which are desirable in an uncertainty measure.  
Tha t  is, Shannon proved  m a uniqueness theorem to the effect that,  / f  the funct ion 
U(pl , . . . ,p , )  possesses certain intuitively reasonable properties,  then this funct ion is 
necessarily given by (1). Shannon 's  uniqueness theorem has been subsequently 
reproven in various ways by several authors (see, for  instance, the elegant proofs  of  
Feinstein I~ and Khinchin<3)). 

I t  has  been found,  however ,  that  it is hard  to generalize (1) to cont inuous prob-  
ability distributionsf(x)34.5) The p rob lem is that  any reasonable generalization yields 
U = oo, which is not  very useful. Fur thermore ,  if  the generalization is carried out  
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in the most straightforward way and the infinity is then "subtracted" (such a sub- 
traction is, of course, nonrigorous), the resulting expression 

= - - k  f f ( x )  lnf(x)  dx (2) U[f(x)] 

is not invariant under a change of variables x --~ y = y(x). The difficulty with (1) 
may be stated more precisely as follows: It is generally possible to treat probability 
theory within a single mathematical formalism, valid for both discrete and continuous 
distributions, by the use of Lebesgue-Stieltjes integrals. However, there is no single 
Lebesgue-Stieltjes integral which reduces to (1) in the discrete case and to (2) in the 
continuous case. Thus, so long as (1) and (2) are used as the basic information 
measures, information theory must always treat the discrete and continuous cases by 
means of two different mathematical formalisms. 

In order to escape the difficulties associated with (1), several authors/6-9~ have 
proposed that the basic information measure should instead be 

I(  pz ,..., Pn ; Pl ~ ..... p,O) = k ~ p~ ln( pi/pi ~ (3) 

where (pl  .... ,p~) and (p0, . . . ,p  0) are two discrete probability distributions. The 
interpretation of (3) will be given in the next section. This expression seems to have 
all the properties desired in an information measure; in fact, in a certain sense, (3) 
provides a generalization of Shannon's expression (1). (G,s,l~ Note, however, that (3) 
is not simply the difference between U(pl~ ~ and U(p~ .... ,p~). 

Expression (3) does not suffer from the difficulties associated with (1). It is 
easy to generalize (3) to continuous distributions f ( x )  and f~  and the resulting 
expression 

I[ f (x);  f~ = k ~ J(x)  ln[f(x)/ f~ dx (4) 
d 

does not exhibit divergence or invariance difficulties. I1~ Both (3) and (4) may be 
encompassed within a single Lebesgue-Stieltjes integral expression. 16,8) 

As has been shown by SchlSgl, (9~ and as is further demonstrated elsewhere, (~~ 
expression (3) is of fundamental importance in statistical mechanics. 

Despite the appealing properties of (3), it has never been clear that (3) is the 
only expression having these properties. That is, a uniqueness theorem for (3), 
similar to Shannon's uniqueness theorem for (1), has not been given. The purpose 
of this paper is to state and prove such a theorem. 

2. S T A T E M E N T  O F  T H E  T H E O R E M  

Consider an observer who is interested in some experiment having possible out- 
comes z 1 .... , z , ,  but who does not know the precise outcome z~. Let his initial 
"state of knowledge" about the outcome be described by the prior probabilities 
pl~ ~ Now, suppose that our observer is handed a message containing new 
data about the outcome, and that the observer's state of knowledge after receiving 
the message is described by the posterior probabilities Pl ,..., P~ �9 We seek an expression 
for the amount of information I in the message. 
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The information should be a function I ( p z  .. . . .  p~  ; pzO ... . .  p o) of the prior and 
posterior probabilities. It seems reasonable to postulate that 

I is a continuous function of its 2n variables, (5) 

and 

and 

I ( p z  , . . . ,  p~ ,�9 P k  ... . .  p~  ; pzO ..... p O ..... pkO ..... p o) 

�9 0 0 0 0 
= I ( p ~  ... . .  Pk  . . . . .  PJ ,..., P ~ ,  P l  .. . . .  P k  .... , P j  .. . . .  P,~ ) (6) 

Similarly, 
P(z~ I E2) = P J q 2  (i -~ r + 1 ..... n )  (13) 

P ~  i J E2) = p f l / q f  (i = r + 1,.. . ,  n )  (14) 

Now, information about the outcome may be given e i t h e r  by specifying the proba- 
bilities p~ ..... p~ directly, or  by specifying the probabilities (9) of the two events 

I = 0  if p r  ~ for all i (7) 

Postulate (5) says that the information is changed only slightly when the proba- 
bilities are changed only slightly; (6) says that the information does not depend on 
the order in which the possibile outcomes z~ are labeled; (7) says that no information 
is obtained if the message results in no change in the probabilities�9 

For  any pair of integers n, no such that no ~ n, the expression I ( 1 / n  . . . . .  l / n ,  0, . . . ,  0; 
l / no  . . . . .  l/n0) represents the information obtained when the number of equally likely 
possibilities is reduced from no to n. It is reasonable to postulate that 

I ( 1 / n  .. . . .  1/n,  0 .. . . .  0; 1~no ... . .  l/n0) is an increasing function of  n o and a (8) 
decreasing function of n, for any integers n, no such that no ) n 

This says that the information is greater when the number no of  prior possibilities 
is greater and/or the number n of posterior possibilities is smaller�9 

Finally, a condition known as the "composition rule" will be needed�9 In prob- 
ability theory, the set S -~ {zl, z2 ..... zn} of possible outcomes is called a "probability 
space," and any subset E C S is called an "event�9 Suppose that S is divided into two 
events E1 = {z~ ,..., zr} and E2 = {Zr+l ,-.., Z,~}. The posterior probabilities of these 
events are 

P(Ea) ~ qz = P l  @ "'" @ P r ,  P (E~)  ~ q~ = Pr+l  @ "'" @ P.~ (9) 

while the prior probabilities of E 1 and E 2 are 

p0(E1) _= q O = pl 0 + ... + prO, P~ --  q~~ = p~ + -.. + p 0  (10) 

The posterior probabilities of the z~, given that E a occurred, are 

e ( z ,  ] E~) = Pi /q~ (i  = 1 ..... r )  (11) 

while the prior probabilities of the z~, given E~, are 

P ~  J E O  - - p ~ 1 7 6  (i = 1 . . . . .  r )  (12) 
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Fig. I. 

Pl . ~ Z l  

P ~ Z  2 

I 

~'Z n 
A representation of the probability distribution Pl ..... p~ on the space S = {zl ,..., z,). 

E 1 and E2 and then giving the conditional probabilities (11) and (13). These two 
alternatives are shown diagrammatically in Figs. 1 and 2. We now postulate 

0 0 
I ( P l  ,.. . ,  P ~ ,  P~+I , ' - . ,  P~ ; Pl~ -.., P~,  P~+I ,-.., p o) 

�9 �9 0 0 0 0 --- I (qz  , q2 , ql ~ q o) 4- q~I(pa/qz  .... , P~/ql  , P~ /q~ ..... P~ /qx ) 

; P~+a/q2 .... .  p,~ /q~ ) (15) + qJ(P~+a/q~ .. . . .  P~/q~ o o o o 

Postulate (15) says that  the amount  of  information in the scheme represented 
by Figure 1 equals the amount  of  information in the equivalent scheme of  Figure 2, 
and, furthermore,  that  the right member  (15) is a reasonable expression for the 

Fig. 2. 

~ Z r +  I 

~ ~ . Z I Z n  

An alternative way of representing the probability distribution Pz ..... p~. The symbols 
qi and q~ are defined by (9). 
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information in the scheme of Figure 2. Thus, the basic idea of the composition rule is 
the assumption that the information in the scheme of Figure 2 is the sum of the infor- 
mation I(q~,  q2 ; q o, q2O) concerning the first step (i.e., concerning which of the events 
E 1 or E 2 occurred) plus the weighted [with weighting factors P ( E  0 and P(E2)] infor- 
mation concerning the second step. This seems reasonable if one thinks about it 
awhile; at least, the right member of (15) seems more reasonable than any other 
expression for the information in the scheme of Figure 2. 

Uniqueness Theorem.  Let l ( p z  ..... p,~ ; paO ..... p0 )  be defined for any pair of  
probability distributions (p~ ..... p , )  and (p0  ..... p 0 )  on a finite probability space 
S : {z~ ..... z~}, and let I satisfy the postulates (5)-(8) and (15). Then I is necessarily 
given by (3), where k is a positive constant. 

Thus, (3) is the only expression having the intuitively reasonable properties 
(5)-(8) and (15). 

Shannon's uniqueness theorem for the expression (1) is similar to the above 
uniqueness theorem for (3). However, Shannon's theorem (and its proof) is somewhat 
less complicated than the present theorem, since (1) involves only a single probability 
distribution, whereas (3) involves two distributions. Portions of  the present proof  
will follow the proofs of Shannon's theorem given by Feinstein ~2) and Khinchin. (3) 

3. PROOF OF THE THEOREM 

We first show that 2 

I(qz .... , q , - l  , q~ ; ---) : I(qz ,..., q,-2 , q , - I  4- q,~ ; ---) 

+ (qn-1 § qn) I ( q.-1 q. 
qn-1 4- qn ' qn.1 4- qn 

Proof of (16). By (15), with Q ~ q~ + .-. + q~-2, 

; ) (16) 

/ ql q~-2. \ 

1(ql ,-.., qn ; "")  = 1(0 ,  qn-1 4- qn ; "")  4- a I  ( a .... , a , ) 

+ ( q , - 1  + q , ) I (  qn-1 q ,  . .) 
q , , z  + q,~ ' q,~-z + q,~ ' 

Again using (15), 

1(ql ..... q~-2, q,~-~ § q,~ ; ---) = I (Q,  q~_~ + q~ ; ---) 

§ QI(q~,/O ..... q~-2/Q; "'-) + (q,,~-i + q,~)1(1; 1) 

By (7), 1(1; 1) = 0. Combining (17) and (18), we obtain (16). 

(17) 

(18) 

2 Concerning the notation: Dashes appearing to the right of the semicolon will always mean that the 
variables on the right are identical with those on the left, only with the superscript "0" attached. 
For instance, l(pl , P2 ; ---) means I(pl , p~ ; pz ~ , p2~ 
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Next, we show that  

I (  p ~  ..... px,,, ,---, p , x  ..... p,,~ ; ---) = I(qx ..... q~ ; ---) 

+ ~ q~I(pn/q~ ..... p ~ / q ~  ; ---) 
/ = 1  

where qg ~ p~-z + --. 4 - p ~ .  

(19) 

Proof of (19). By (15), Eq. (19) holds for  n = 2. We proceed by induction. 
Assuming  (19) holds for  n, 

I ( P n  ,..., Pa,,, ,---, P~+a,~ ,..., P~a+l.m ; - - - )  -~- I (ql  ,..., qn-1, q~ -+- q~+z ; - " )  

i [ Pil  Pi,~ , ) -~ Z qi t -q~ ~ ..... q, 

+ (q~, + q~+l) I (. P~z Pn~ Pn+z,x 
q~ + q~+l ' " "  q~ + q~+l ' q~ + q~+l 

Pn+l,m . .) 
' " "  qn q- qn+z ' 

(2o) 
By (16), the first term on the right-hand side o f  (20) may  be written 

(ql ," ' ,  q~ ,  q,+l ; ' " )  - -  (qn -~- qn+l) [ (" qn q n + l  . .) 
q ,  "1- q,~+l ' q ,  + qn+l ' 

By (15), the last term on the right-hand side of  (20) may be written 

q~ + q~+l ' q ,  + q 1 ' ', q~ ~ q ,  .... ' q ,  ' 

~ q~+lI ( P ~+1,1 P"+~ . . . .  ) 
q~+l ' " "  q~+l ' 

Plugging these two expressions into the appropriate places in (20), we obtain (19) 
for  n + 1. Thus, (19) holds for every n. 

Define ~ 

f ( r ,  ro) ~ I (1 /r  ..... l / r ,  0 ..... 0; 1/ro ..... l/r0) (21) 

By (19), with m = r 0 and n = So, 

I ( p  n = 1/rs ..... Par -= 1/rs, px.r+~ = 0 ..... Pz~o ~ -  O , " " P s l  = 1/rs, . . . ,p~r = 1/rs, 

P~,~+I ---- 0 ..... p~,.o ---= 0,p~+la = 0 ..... P~0~o = 0; 1/roSo ,..., 1/roSo) 

= I (1 / s  ..... l/s, 0 ..... 0; 1~So ,..., 1/So) 

+ s ( 1 / s ) I ( 1 / r  ..... 1/r, 0,. . . ,  0; 1/r o ,..., l/to) 

The symbols r, ro, s, and So will always mean positive integers, with ro > r and So ~> s. 
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Using (21) and (6), this becomes 

f (rs ,  roSo) = f (s ,  So) -b- f (r ,  ro) (22) 

By (22) and (7), 

f (rs ,  rSo) = f (s ,  So) q - f ( r ,  r) = f (s ,  so) (23) 

Letting ro/r = ro'/ro' ~ u, (23) implies 

f (r ,  ro) = f(r ,  ur) = f(r ,  ro' r/r') -= f ( r '  r, ro'r ) = f (r ' ,  to' ) (24) 

Equation (24) says thatf(r ,  ro) depends only on the ratio ro/r. Thus, 

g(ro/r ) =- J(r, ro) (25) 

defines a single-valued function g(x),  defined for every rational x ~> 1. By (25) and (22), 
defining x = ro/r and x' = ro'/r', 

g(xx ' )  = g(roro'/rr') = f (rr ' ,  roro') = f (r ,  ro) q- f ( r ' ,  ro') = g(ro/r) q- g(ro'/r') 

Thus, 

g(xx ' )  = g(x) q- g(x')  (26) 

for every rational x ~> 1 and x' ~> 1. By (8), g(x) is a monotonic increasing function. 
We now show that 

f ( r ,  ro) = g(ro/r ) = k ln(ro/r ) (27) 

where k is a positive constant. 

Proof  of (27).  By (26), 
g(ro ~) = rig(to) (28) 

Let integers n, r, and s be given arbitrarily, and let the integer m be determined by 

m ~ n In So/In ro < m + 1 (29) 

from which 

ro,~ ~< so,~ < r~+l (30) 

m/n ~ In s0/In ro < (m § 1)/n (31) 

Since g is monotonic increasing, (28) and (30) imply 

mg(ro) <~ ng(so) < (m -k 1)g(ro) 

~o that 

m/n <. g(So)/g(ro) <~ (m -b 1)In (32) 
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By (31) and (32), 

g(so) in s o ~< 1 (33) 
g(ro) In ro n 

Since the left-hand side of  (33) is independent  o f  n, and since n can be chosen arbitrari ly 
large, (33) implies that  

g(so)/g(ro) = In So/In ro 

o r  

g(ro) = k In r o (34) 

Since g is monoton ic  increasing, the constant  k must  be positive. This proves (27) 
for  r ~ 1 and any r o . By using precisely the same reasoning as was used in obtaining 
(34), it m a y  be seen that  

g \ ~ /  = k In (35) 

[Simply replace r 0 by (r + 1)/r and So by (s + t)/s; Eqs. (28)-(34) all remain valid 
under  this replacement.]  We now prove  (27) by induction on r. Assume (27) is valid 
for  (to,  r). Then, by (26) and (35), 

g = g  r + l  r ~ - g  ~ + g \  r 1' 

g ( - ~ - ~ - - i - ) = g ( ~ - )  - g  = k l n ( ~ - ) - - k l n ( r +  t ] : = k l n ( ~ ,  r / 

Hence, if  (27) holds for  (r o , r), then it holds for  (r o , r + 1). But, by (34), Eq. (27) 
holds for  (ro, 1). Hence,  (27) holds for  all ( to,  r). 

Let  p and pO be rat ional  numbers  less than or equal to 1: p = r/s ~ 1, pO ~_ ro/S ~ <~ 1. 
I f  the three conditions r o ~> r, So ~> s, and So - -  ro >~ s - -  r do not  hold for  the choice 
(r, s, r o , So), then replace (ro, So) by (nro, nso), with n sufficiently large that  the three 
condit ions hold for  (r, s, nro,  nso). This replacement  does not  affect p or pO. Hence,  
it may  be assumed,  without  loss of  generality, that  ro >~ r, so >~ s, So - -  ro ~> s - -  r. 
By (6) and (19), with appropr ia te  grouping of  the variables, 

I(1/s, . . . ,  1/s, 0 ..... 0; 1~So ,..., 1/So) 

= I [ r / s ,  ( s  - r ) / s ;  r o / s o ,  (So - ro)/So] 

-k (r /s)1(I /r , . . . ,  1/r, 0,..., 0; 1/ro ..... 1/ro) 

+ [(s - -  r)/s] I [ l / ( s  - -  r),..., l / ( s  - -  r), 0 ..... 0; l/(so - -  ro),..., 1~(So - -  ro)] 

By (21) and (27), this becomes 

I (p ,  1 - -  p; pO, 1 - -  pO) = f ( s ,  So) - -  p f (r ,  ro) - -  (1 - -  p ) f ( s  - -  r, s o - -  ro) 

= kp  ln (p /p  ~ + k(1 - -  p) ln[(1 - -  p)/(1 - -  pO)] 
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By (5), this result extends to all irrational p. This proves the theorem for n = 2. 
Using (16), the theorem follows by induction on n. 
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